Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory
نویسنده
چکیده
In this paper we study extensions of the arithmetic operators +, −, ·, ÷ to the lattice L of closed subintervals of the unit interval. Starting from a minimal set of axioms that these operators must fulfill, we investigate which properties they satisfy. We also investigate some classes of t-norms on L which can be generated using these operators; these classes provide natural extensions of the Lukasiewicz, product, Frank, Schweizer–Sklar and Yager t-norms to L .
منابع مشابه
Arithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملGeneralized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making
The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...
متن کاملGroup Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making
Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...
متن کاملGeneralized Interval-Valued Fuzzy Rough Sets Based on Interval-Valued Fuzzy Logical Operators
The fuzzy rough sets and generalized fuzzy rough sets have been extended by three pairs of fuzzy logical operators to deal with real-valued data for a variety of models. Three pairs of fuzzy logical operators are triangular norm or t-norm and its dual (t-conorm), residual implicator or R-implicator and its dual, fuzzy implicator and t-norm, which are frequently discussed in generalization model...
متن کاملInterval-valued intuitionistic fuzzy aggregation methodology for decision making with a prioritization of criteria
Interval-valued intuitionistic fuzzy sets (IVIFSs), a generalization of fuzzy sets, is characterized by an interval-valued membership function, an interval-valued non-membership function.The objective of this paper is to deal with criteria aggregation problems using IVIFSs where there exists a prioritization relationship over the criteria.Based on the ${L}$ukasiewicz triangular norm, we first p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 160 شماره
صفحات -
تاریخ انتشار 2009